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Kinetics of formation of a phase with an arbitrary stoichiometric composition in a multicomponent
solid solution
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A kinetic theory of nucleation and growth of a evolving phase with a given stoichiometric composition in a
multicomponent solid solution is developed. It is assumed naturally that the phase grows as a result of
individual atom incorporation into the phase domain in a stoichiometric ratio. As it is shown, for the case of
phase formation in a multicomponent system the basic kinetic equations, describing the nucleation-growth
process, can be reduced formally to the respective expression derived for nucleation-growth processes in
one-component systems. However, the effective diffusion coefficients and the effective supersaturation are
expressed as nontrivial combinations of the thermodynamic and kinetic parameters of the different components
involved in the phase formation process. In the determination of these properties, the theory is not restricted in
its applicability to perfect solutions but extended to phase formation in real mixtures. Thus, the theory may be
applied directly towards the interpretation of experimental data. In the present paper, particular attention is
devoted to the analysis of the two stages of the overall transformation process:~1! the stage of quasi-steady-
state nucleation and~2! the transient stage of coarsening. As the results of this analysis, the quasi-steady-state
nucleation rate, the number of clusters formed via nucleation and growth, and the time evolution of the cluster
size distributions are established. Moreover, estimates are given for the duration of the different stages of the
transformation process.
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I. INTRODUCTION

A large number of studies, including several monograp
have been devoted to the investigation of the kinetics
first-order phase transitions@1–16#. Nevertheless, a numbe
of problems remain unsolved as yet.

As a further restriction in the applicability of the theory
experiment, most of the previous analyses are devote
single-component systems. Homogeneous binary nuclea
is more complex as single-component nucleation. In p
these complications arise from uncertainties in the kno
edge of the composition of the critical clusters and the
lated problem of the compositional dependence of the crit
cluster surface tension. These limitations in the applicat
of the theory to experiment are even more pronounced in
case of phase formation in multicomponent systems.

Moreover, in the majority of previous studies, attention
directed mainly towards the determination of the so-cal
steady-state nucleation rate or, in other words, the ste
state flux in cluster size space. Steady-state conditions ca
realized in real systems, however, only for limited periods
time or when the state of the solution is artificially mai
tained constant by some appropriate real or supposed me
nism ~cf., e.g.,@1,12#!.

In most cases of interest, the degree of metastability or
state of the ambient phase changes in the course of the p
transformation because of depletion effects due to clu
formation and growth. Different aspects of the effect
depletion on the course of first-order phase transitions h
been studied by various authors~see, e.g., Tunitskij@17#,
Wakeshima@18#, Binder and Stauffer@19,20#, Rusanov@21#,
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Gunton, San Miguel, and Sahni@22#, Schmelzer@23#, Weh-
ner and Wolfer@24#, Schmelzer and Ulbricht@25#, Ulbricht
et al. @26#, Barrett and Clement@27#, Tokuyama and
Enomoto@28#, Grinin @29#, Kuni, Grinin, and Kurasov@30#!.
As it has been shown~cf. Schmelzer and co-worker
@23,25,26#!, depletion effects affect nucleation quantitative
and determine qualitatively the whole course of first-ord
phase transformations proceeding by nucleation and gro
As the result of such depletion effects, in particular, only
finite number of clusters develop in the system~cf.
Schmelzer and co-workers@31,32#, Slezov, Schmelzer, and
Tkatch @33#!.

An extended theoretical analysis of the kinetics of pha
formation of single-component systems via nucleation a
growth has been given previously in@34#. In the present
paper these analyses are extended to multicomponent
tems. In order to remedy various problems encountered
the description of phase formation an additional assump
is employed; it is assumed that the new phase has a w
defined but arbitrary composition. Using this assumption,
kinetic equations governing nucleation and growth, can
reduced to a relation identical in its form to the respect
expression for phase formation in single-component syst
@35–37#. However, as will be shown in the course of th
analysis, the effective diffusion coefficients and the effect
supersaturation have to be expressed as nontrivial comb
tions of the thermodynamic and kinetic parameters of
different components involved in the phase-formation p
cess.

In the analyses, we assume~cf. @33,34#! that, for the
whole course of the process of nucleation, at any instan
©2002 The American Physical Society06-1
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time a quasi-steady distribution function with respect to
size of the phase particlesf (n,t) is established in the rang
of cluster sizes 1<n<nc . Here n denotes the number o
structural units~or, quasimolecules! in an aggregate~or clus-
ter! of the evolving phase, andnc is the critical size of the
aggregate. The critical cluster is an aggregate of phase
ticles in unstable equilibrium with the solid solution. Its si
changes with variations in the state of the ambient phas

Similarly, the quasi-steady-state distribution with resp
to cluster size in the rangen<nc is determined by the cur
rent state parameters of the solid solution. In other words,
the range of cluster sizesn<nc , the time of adjustmentt r of
the distribution functionf (n,t) and the fluxI (n,t) in cluster
size space to the current state parameters of the solid sol
is much less when compared to the characteristic time
variation of these parameters. Generally, these conditions
valid.

In line with the classical approach, we assume that
aggregation formation process of the evolving phase p
ceeds via incorporation and emission of individual structu
units exclusively. This way, the smallest aggregate of
evolving phase corresponds ton51. Further, we go over
from a discrete description in terms of a set of kinetic eq
tions to a continuous description in terms of the Frenk
Zeldovich equation. In the domain of cluster sizesn>nc
@1, we focus on the continuum description which is reas
able approximation. Moreover, the properties of the agg
gates of the evolving phase approach the properties of t
respective bulk phases.

The kinetic equations are applied to the region of clus
sizesn<nc as well but mainly in order to derive an estima
of the time to establish quasi-steady-state conditions an
obtain the boundary conditions atn5nc . Thus, the approxi-
mations arising from the application of the kinetic equatio
to very small clusters are of minor importance for the resu
of the analysis outlined below.

Once the stage of nonsteady-state nucleation is over~the
stage of approach of quasi-steady-state conditions in
range of cluster sizesn<nc in cluster size space!, the further
evolution can be divided into a stage of dominant qua
steady-state nucleation followed by the stages of indepen
and competitive growth@13,14#. The present analysis is de
voted mainly to the description of the stages of quasi-stea
state nucleation and independent growth. For these sta
the evolution in time of the basic characteristics of t
nucleation-growth process is found in form of the distrib
tion functions with respect to cluster sizes and the si
dependent flux in cluster size space. Further, the numbe
clusters of the phase and their average size at the end o
independent growth stage are determined as a function o
initial system supersaturation. Finally, estimates for the
ration of the stages of quasi-steady-state nucleation and
dependent growth are provided.

The state of the cluster ensemble at the end of the nu
ation and independent growth stages simultaneously re
sents the initial state for the process of competitive grow
The theory of competitive growth or coarsening was dev
oped for the first time by one of the authors in cooperat
with Lifshitz and Slezov@13,14#. Thus, the present analys
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provides a complete quantitative description of the en
course of first-order phase transitions in multicomponent s
tems.

II. BASIC SET OF EQUATIONS

We consider processes of formation of a phase with
given stoichiometric composition. The stoichiometric coef
cients specifying the composition of the evolving phase
denoted byn i and the number of basic structural units in t
cluster or aggregate of the evolving phase given byn.

The volumeV of an aggregate of the evolving phase
given then byV5nvs with vs5S in iv i . Here vs is the
volume of a structural element,v i is the volume of thei th
component in the ambient solution and in the evolving ph
~i.e., we do not consider differences in the respective v
umes in both phases resulting from elastic stresses!.

The basic system of equations, describing the kinetics
nucleation and growth, are given by~see@35–37# and Ap-
pendix!

] f ~n,l !

]t
52

]I ~n,t !

]n
,

I ~n,t !52nn,n11S ] f ~n,t !

]n
1

1

T

]DF

]n
f ~n,t ! D , ~1!

f ~n,t !un→05)
i

ci
n i, f ~n,t !u t50,n.1→0, ~2!

c0;5ci~ t !1n iE
0

`

f ~n,t !ndn. ~3!

The first set of equations Eqs.~1! describe the evolution
of the cluster size distribution functionf (n,l ) and the flux in
cluster size spaceI (n,t). The distribution functionf (n,t)
has to obey the boundary and initial conditions as given
Eq. ~2!. Here it is assumed that the system can be brou
suddenly into the respective metastable initial state. Agg
gation phenomena and their effects on the phase forma
process, which may occur in the course of the transfer of
system into the considered initial state, are excluded fr
consideration~for the account of such additional transie
effects cf., e.g.,@38,39# and references cited therein!.

The number of nucleation sites is given byf (n→0,t) and
is determined by the number of configurationsP ici

n i that
may result in the evolution of the structural element of t
evolving phase.T is the temperature in energetic units~i.e.,
kBT!.

Further, conservation of the total number of particles
sults in the set of balance equations Eqs.~3! for the different
components forming the evolving phase.ci is the actual con-
centration andci0 the initial concentration of thei th compo-
nent in the solution. Note that all concentrationsci as well as
the distribution functionf (n,t) refer to the respective num
bers per single lattice site.

In order to solve the given system of equations, one ha
specify the coefficients of aggregationnn,n11 . As shown in
6-2
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@35–37#, these coefficients can be expressed via the ma
scopic growth ratesdn/dt and the derivative (]DF/]n) as

dn

dt
52nn,n11

]DF

]n
. ~4!

Here (]DF/]n) is partial derivative ofDF. DF is the
change of the thermodynamic potential if in the solid so
tion an aggregate of the evolving phase withn structural
elements is formed. Both the aggregate of the evolving ph
as well as the solution are considered to be in a state
internal thermal equilibrium while the system as a whole
in a nonequilibrium state. The change of the characteri
thermodynamic potentialDF, due to the formation of such
an aggregate withn structural elements, can be express
then as

DF5nS ms2(
i

n im i D 14pas
2sn2/3. ~5!

We obtain then immediately

1

T

]DF

]n
5

1

T S ms2(
i

n im i D 1bn21/3, b5
8p

3

sas
2

T
.

~6!

In above equations,ms is the chemical potential per struc
tural element in the phase,m i is the chemical potential of the
i th component in the solution,as5(3vs/4p)1/3 is the char-
acteristic size parameter of the structural elements,s is the
specific interfacial energy of the aggregate of the phase in
solution. Note that, since the composition of the aggrega
and the specific volumes of the different components
independent of cluster size, the surface energys has to be
considered as independent of cluster size as well.

The size of the critical aggregatenc for a cluster, being in
unstable equilibrium with the ambient solution, is det
mined via (]DF/]n)50 or via

nc
1/35

b

(
i
n im i2ms . ~7!

For a weak or perfect solution, wherem i5c i1T ln ci
holds, we get, in particular,

r c5nc
1/35

b

lnS ) ici
n i

k`
D , k`5expS ms2( in ic i

T D . ~8!

Here with k` the chemical equilibrium constant has be
introduced.

For any arbitrary value ofn we may write immediately

1

T

]DF

]n
5b~n21/32nc

21/3!,
DF~n!

T
52

bn

nc
1/31

3

2
bn2/3,

2
1

2T

]2DF

]n2 5
b

6n4/3, ~9!
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DF~nc!

T
5

b

2
nc

2/3, DF~Snc!522bnc
2/3, dnc5A6nc

4/3

b
,

~10!

1

2T

]2Df~n!

]n2 U
n5nc

52
1

dnc
2 52

b

6
nc

24/3. ~11!

The quantitydnc describes the range ofn values in the vi-
cinity of the critical cluster size, where the relatio
DF(nc)2DF(n)<T holds.

The expressions for the aggregation coefficientsnn,n11
can be found from the analysis of the mode of aggregation
the clusters. For the small-sized clusters, prevailing in
stage of nucleation, the growth is limited kinetically~e.g.,
@34,37#!. In the transient stage, the aggregates of the ev
ing phase are sufficiently large, so that the growth ratedn/dt
and the aggregation coefficients can be found from the s
tion of the diffusion equation.

In order to arrive at the respective expressions, we hav
take into account first that the partial fluxesj i of individual
components have to fulfill the relations@35–37,40,41#

j i

n i
5

j k

nk
5¯ . ~12!

In addition, we may write down for any partial fluxj i @37,42#

4pR2 j i52nni ,ni11

1

T

]DFs

]ni

5
3a iDi c̃in

2/3

am
2 T S vs

vm
D 2/3

@m i~ c̄i !2m i~cni!#, ~13!

DFs5(
i

ni@m i~cni!2m i~ c̃i !#, ms5(
i

n im i~cni!.

~14!

Herems is the chemical potential of a structural element
the phase,m i(cni) are the chemical potentials of the particl
of the i th component in the solution in equilibrium with
cluster of sizen, m i( c̄i) are the chemical potentials of th
particles of thei th component in the solution in the immed
ate vicinity of the aggregate,$cni% represents a set of con
centrations of the particles of the different components t
result in an equilibrium with an aggregate of sizen, while
$c̄i% represents the set of concentrations in the vicinity of
surface of the aggregate. We get

]DFs

]ni
52

1

T
@m i~ c̄i !2m i~cni!#,

nni ,ni115
3a iDi

am
2 c̃i S vs

vm
D 2/3

n2/3. ~15!

Herenni ,ni11 is the frequency of incorporation of particles o

the componenti into the phase aggregates,a i is the sticking
coefficient (0<a i<1), Di is the partial diffusion coefficient
6-3
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of the componenti, am is the lattice parameter of the matr
(vm54pam

3 /3). The radiusR and the particle number in th
aggregates are related vian5(4pR3/3vs), vs54pas

3/3.
For the rate of growth of an aggregate of sizen, we get

from Eq. ~12! and equationvs5( in iv i

dn

dt
5

4pR2

vs
(

i
v i j i54pR2

j i

n i
. ~16!

As the next step, we insert Eq.~13! into Eq. ~16!. After-
wards, we may divide the equation at the coefficient in fro
of the term@m( c̃i)2m i(cni)#, multiply the resulting equa-
tion atn i , and take the sum over all values ofi. As the result,
we obtain

dn

dt
5

3D*

am
2 S vs

vm
D 3/2

n2/3(
i

n i@m i~ c̃i !2m i~cni!#,

1

D*
5(

i

n i
2

a iDi c̃i
. ~17!

In the limiting case of a weak solution, we get, in partic
lar,

DF52n lnS )
i
~ci !

n i

k`

D 14psas
2n2/3,

kn5)
i

~cin!n i5k`eb/~n1/3!,

~18!
]DF

]n
52 lnS ) i ~ci !

n i

kn
D ,

resulting in

dn

dt
52nn,n11

]DF

]n
5

3D*

am
2 S vs

vm
D 3/2

n2/3 lnS ) ici
n i

kn
D ,

~19!

dn

dt
5

3D*

am
2 S vs

vm
D 2/3

n2/3bS 1

nc
1/32

1

n1/3D ,

nn,n115
3D*

am
2 S vs

vm
D 2/3

n2/3. ~20!

Equations~19! and ~20! describe the flux of particles to
the aggregates of the evolving phase in the immediate vi
ity of the aggregate. The concentrations of the different co
ponentsc̃i in this region are determined by the interplay
losses by aggregation and input fluxes due to the diffus
from the distant environment. For the determination of th
concentrations, the respective diffusion problem has to
solved self-consistently@14,43#.

If the concentrations of the different components in t
phase and the ambient solution differ considerably, then
order to find the rate of growth of the aggregates of
phase, one may employ the steady-state solution of the
03150
t

n-
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n
e
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e
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fusion equation and the effects of the motion of the interfa
may be neglected@14,33# ~with an accuracy of the orde
ci /ci

s!1, whereci
s are the concentrations in the solution

equilibrium with a macroscopic aggregate of the evolvi
phase!. In such case, we have

dn

dt
54pR2

j i

v i
53S vs

vm
D 2/3Di

am
2

ci2 c̃i

n i
n1/3. ~21!

From Eqs.~13! and ~21! we arrive at the following expres
sion for the determination of the concentrationsc̃i ~for the
case of a weak solution!

lnS c̃i

cin
D5

1

a in
1/3

ci2 c̃

c̃i
. ~22!

Equations~13! and~22! and the equilibrium conditions a
the interface of an aggregate completely determine the
of concentrations$c̃i% and $cni% for the stage of nucleation
In the limit a in

1/3<1 ~which is usually fulfilled in the stage
of nucleation!, we getc̃i>ci @cf. Eq. ~22!#. In this case, it is
more convenient to employ Eq.~19! for the determination of
the growth rate dn/dt with the replacementsc̃i→ci ,
ln(c̃i /cin)>ln(ci /cin).

In the transient stage, when the size of aggregates is
ficiently large~i.e., the inequalitya in

1/3@1 holds!, the rela-
tion c̃i>cin is fulfilled @cf. Eq. ~22!#. In this case, one has t
employ directly Eqs.~21! and ~22! for the determination of
dn/dt.

III. THE STAGE OF NUCLEATION OF CLUSTERS OF
THE EVOLVING PHASE

The description of the kinetics of nucleation is signi
cantly simplified after the time intervalt r when a quasi-
steady-state flux in a cluster size space is established in
range 0<n<nc ~e.g.,@33–35,37,43#!. Indeed, in this case i
is possible to employ a simpler version of the basic equa
Eq. ~1! for the determination of the flux in cluster sizes spa
I (n,t). The respective relation is valid in the whole stage
steady-state nucleation,t r<t<tN . Hereby, the boundary
conditions for the flux in the range 0<n<nc may be ex-
pressed via the boundary conditions for the distribution fu
tion f (n,t). Once the fluxI (n,t) is known, the distribution
function f (n,t) can be found straightforwardly.

An estimate of the time lagt r can be derived in the sam
way as outlined in@33,34#. We get

t r5
5

3

am
2

D* S vm

vs
D 2/3nc

2/3

b
. ~23!

An overview of different alternative attempts to estimate t
quantity is given, e.g., in@12,44,45#. The results, obtained by
different methods, deviate only slightly.

After the completion of the transient stage to steady-s
nucleation, the equation for the determination of the flux
cluster size space may be written in the form@33–35,44#

]I ~n,t !

]t
5nn,n11H ]2I ~n,t !

]n2 1
1

T

]DF

]n

]I ~n,t !

]n J ~24!
6-4
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with the boundary conditionsI (n,t)un5nc
5I (nc). Hereby we

chose the moment of timet50 as corresponding to the be
ginning of the stage of steady-state nucleation, i.e., we m
the replacementt2t r→t.

In the derivation of Eq. ~24!, terms of the order
( ċ/c)I (]I /]t)21.(tN /tc)!1 have been neglected, wheretc
is the characteristic time of change of the concentration
the solution. During the time of steady-state nucleationtN the
change of the concentration in the solution is insignificant
the casencu t50@1. Equation~24! is valid thus for any mo-
ment of timet<tN or whenI (n,t).0 holds for any value of
n. In this stage, the number of supercritical clusters increa

For t>tN , the quantityI (nc) becomes practically equal t
zero and the process of formation of clusters is termina
Their number remains then nearly constant at the subseq
transient stage to coarsening for a timet f.tN . For t>t f the
further evolution is governed by processes of competit
growth or coarsening@13,14#.

In the considered stage of steady-state nucleationt,tN , it
is possible to expressf (n,t) via I (n,t) as @33–35#

f ~n,t !5expF2
DF~n!

T G E
n

`

expS DF~n8!

T D I ~n8,t !

nn8,n811
dn8.

~25!

With I (n,t)5I (nc), 0<n<nc1dnc and the boundary con
dition for f (n,t) at n→0 we get

)
i

ci
n i5E

0

`

expS DF~n8!

T D I ~n8,t !

nn8,n811
dn8, DF~0!50.

~26!

Since DF(n) has a sharp extremum atn5nc @DF(n)
5DF(nc)2T(n2nc)

2dnc
22@1#, we get with Eq.~11!

I ~nc!5A3b

2p

D*

am
2 S vs

vm
D 2/3

)
i

ci
n i expF2

DF~nc!

T G .
~27!

Equation~27! is reduced, evidently, to the respective expr
sion for the steady-state nucleation rate in single-compon
systems in the limiting case of segregation of only one co
ponent.

For n,nc , in Eq. ~25! the maximum ofDF is located
inside the limits of integration. Moreover,I (n,t)5I (nc)
holds and we get

f ~n!un,nc
5)

i
ci

n i expF2
DF~n!

T G 1

2 F12erfS n2nc

dnc
D G .

~28!

Here erf(x)52erf(2x) is the error function.
In the limiting case of a saturated system, we havenc

→` and Eq.~28! is reduced to the well-known steady-sta
cluster size distribution in an equilibrium state.

In the stage of nucleation, we haveI (n,t).0 and for any
given value ofn this quantity is determined by the respecti
values atn8,n. In the later stages of the process, the sit
03150
ke

n
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tion is different. There we haveI (n,t),0 for n,nc and
I (n,t).0 for n.nc . It follows that in the stage of nucle
ation one may determine the functionsI (n,t) for different
ranges ofn values by different methods and take as t
boundary conditions the values determined via the soluti
at the left hand side of the respective intervals.

In order to proceed with the analysis, we introduce t
dimensionless timet5t/ t̃ with t̃ 215D* am

22(vs /vm)2/3.
Further, we note that in the range 1<n/nc<8 the quantity
A53@(n/nc)

1/31(n/nc)
21/311#21 varies only in between

the limits from 1 to 6/7@34#. Consequently, in this rang
of cluster sizes we may set 3n2/3(n21/32nc

21/3)52(n
2nc)nc

22/3 andA>2(n2nc)nc
22/3.

The kinetic equation forI (n,t)5I t̃ can be written then in
this range of cluster sizes as

]I

]t
52

b

nc
2/3~n2nc!

]I

]n
13nc

2/3]2I

]n2 , ~29!

I un5nc
5I ~nc!5I 0 t̃ , I ~n;t!un.nc ,t5050. ~30!

The replacementn2/3→nc
2/3 in the second term on the

right hand side of Eq.~29! decreases the diffusion contribu
tion to the flux forn.nc . However, in the considered rang
this contribution is small@33,34#. In the vicinity of n.nc ,
the replacement represents a quite accurate approximati

In order to solve Eq.~29!, we make the ansatz (I (n,t)
→I @c(x,t),t(t)#) and determine the functionsc and t(t)
via

c5~n2nc!exp~2dt!, d5bnc
22/3,

t~t!5
3nc

2/3

2d
~12e22dt!. ~31!

After this substitution Eq.~29! takes the form

]I

]t
5

]2I

]c2 , I un5nc
5I ~nc!, I ~n,t!un.nc ,t5050

~32!

with the solution

I 5I ~nc!F12erfS c

2At
D G5I ~nc!F12erfS e2dt~n2nc!

2At~t!
D G .

~33!

It follows that after a timetp.1/d.t r in the rangenc<n
<g58nc a steady state with the fluxI 5I (nc) establishes.
Thus, the time of establishment of the steady-state condit
in the rangen<g58nc is of the same order as the time o
establishment of the steady state during nucleation in
range 0<n<nc .

The distribution function over cluster size in the ran
nc<n<g.8nc can be derived from Eq.~25! via a Taylor
expansion ofDF(n) in the vicinity of n
6-5
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f ~n,t!5
I 0

nn,n11
E

n

`

expH 2
1

T
@DF~n!2DF~n8!#J dn8

5
I 0

2nn,n11
Ap

b F12erfS a

2bD Gea2/~4b2!, ~34!

a52
1

T

]DF

]n
>0, b52

1

2T

]2DF

]n2 .0, n>nc .

~35!

The functionf (n,t), determined via Eq.~34!, goes over
continuously into the expression derived via Eq.~28! for n
5nc . This way, the boundary conditions forI (n,t)5I (nc)
hold after the time intervalt.2t, at g58nc .

In the rangen>g, it is also possible to simplify furthe
the kinetic equation~29! describing the time evolution o
I (n,t) and obtain an exact analytic solution. However, o
has to account for the decrease of the degree of metasta
of the system due to the continuous formation and growth
the already formed supercritical clusters~depletion effects!.
In this way, an expression for the time interval of dominati
steady-state nucleation may be obtained.

In the range of cluster sizesn>g.8nc , we get for the
case of a weak solution

DF~nc!

T
5

DF„nc~0!…

T
1nc~0!w,

w~t!52 ln )
i

S ci~t!

ci~0! D
n i

. ~36!

Hereci(0)5ci0 is the initial concentration of the particles o
the i th component in the solution. These quantities obey
inequalityci0>ci .

The boundary conditions atn5g may be written in the
form

I ~nc!5I „nc~0!…exp@2nc~0!w~t!#. ~37!

As evident from Eq.~37!, for nc(0)@1 a small change o
the quantityw results in a significant decrease of the nuc
ation rate. Processes of nucleation are terminated practic
if the conditionw(tN)51/nc(0) is fulfilled.

In the considered range of cluster sizes, the equation
the flux may be formulated most conveniently when the va
able r 5n1/3 is employed@34–36#. We get

]I

]t
52

b

r c

]I

]r
1

1

3r c
2

]2I

]r 2 , ~38!

where the boundary condition is given by Eq.~37!.
In Eq. ~38! several terms are omitted that are small

comparison to (b/2r c)/(]I /]r ) @i.e., (2r 23/3)(]I /]r ) and
(b/r )(]I /]r ) for b.1#. Moreover, the substitution 3r 22

→3r c
22 is made~in the considered range the inequalityr

.2r c holds!. Such approximation results in a sufficient
accurate description of the spectrum of the viable nuc
which give the dominating contribution into the law of co
servation of particle numbers. However, the mentioned
03150
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-
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proximations result in some additional broadening of t
front of motion of the aggregates in cluster size space@34–
36#.

As a next step, we redefine the variabler via r 5n1/3

2g1/3. The solution forI is expressed further as

I 5expS 3

2
brr cDexpS 2

3

4
b2t D p~r ,t!. ~39!

A substitution of this expression into Eq.~38! results in the
following equation for the functionp(r ,t)

]p

]t
5~3r c

2!21
]p2

]r 2 . ~40!

The solution of Eq.~38! with the boundary conditions Eq
~37! reads then

I 5I „nc~0!…e3brr c/2
r

2 S p

3r c
D 21/2E

0

t

exp$2nc~0!w~t8!

23b2~t2t8!/423r 2r c
2/@4~t2t8!#%

dt8

~t2t8!3/2.

~41!

With the variable z5rr c@4/3(t2t8)#21/2 we may write
down the expression forI in the form

I 5I „nc~0!…
2

Ap
E

rr c~4t/3!21/2

`

exp@2ncw~t23r 2r c
2z22/4!#

3exp@2~3brr cz
21/42z!2#dz

5I „nc~0!…
2

Ap
exp@2ncw~t2rr cb

21!#

3E
z~t850!

`

exp@2~3brr cz
21/42z!2#dz. ~42!

In Eq. ~42!, the second term in the first expression ha
sharp maximum atz5z0 . In the vicinity of z0 we may write
down

f 2~z!5S 3

4

brr c

z
2zD 2

.4~z2z0!2, z05AS 3

4
brr cD .

~43!

With such approximation, we arrive at

I ~n,t!5I „nc~0!…exp@2ncw„t0~n,t!…#
2

Ap

3E
j

`

exp~2j82dj8!, ~44!

j52@z~t850!2z0#52S rr c

A4t/3
2z0D , ~45!
6-6
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t0~n,t!5t2rr cb
215t2~r 2r g!

r c

b
,

t0~r max,t!50, t0~q1/3,t!5t, r max~t!5r g1br c
21t.

~46!

Here the redefinition ofr has been taken into account (r
→r 2r g).

r max(t) describes the motion of the cluster front in clus
size space along the characteristic solution of Eq.~44!. The
diffusiveness of the front is determined by the integral te
in Eq. ~44!. This integral is practically equal to unity forj
<0 and equal to zero forj>0. Approximately, we may write
thus

I ~n,t!5I „nc~0!…exp@2nc~0!w„t0~n,t!…#u„r max~ t !2r …

~47!

with

r max~ t !5r g1
bt

r c

5r g1 lnS )
i

ci
n i

k`
D t

t̃
,

u~x!51~x.0!, u~x!50~x,0!. ~48!

Since the broadening of the front of motion of the clust
in cluster size space is small, we may employ Eq.~47! for the
application of the laws of conservation of the numbers
particles. These laws can be written as

w52 ln )
i

S ci

ci0
D n i

5(
i

n i lnS ci0

ci
D ,

ci05ci1n iE
0

`

n f~n,t!dn, ~49!

ċi52n iE
0

`

n
] f

]t
dn52n i S I ~t!g2E

0

t

I ~t0!
]n

]t0
dt0D .

~50!

By definition of the quantityt0(n,t) we may write down
@employing Eq.~44!#

n~t2t0!5F r g1 lnS )
i

ci
n i

K`
D ~t2t0!G 3

. ~51!

With Eq. ~51!, we may go over in Eq.~49! from the variable
n to the variablet0(n,t). We then get

E
g

`

I „t0~n,t!…dn5E
g

nmax
I ~t0!dn

5E
t0~g,r !5t

t0~nmax,t!50
I ~t0!

dn

dt0
dt0

52E
0

t

I ~t0!
dn

dt0
dt0 , ~52!
03150
r
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f

wheredn/dt52dn/dt0 is the rate of growth at the momen
of time t of those aggregates of the phase, which have gro
up to the sizeg at the moment of timet0 , nut5t0

5g,

r ut5t0
5r g . This way, we get the following expression forw:

dw

dt
52(

i

n i

ci

dci

dt
5S ( n i

2

ci
D S Ig2E

0

t

I ~t0!
dn

dt0
dt0D .

~53!

Equation~53! has a clear physical meaning~cf. also@34–
36#!. The decrease of the degree of metastabilityw is due,
both, to the formation of supercritical clusters@first term in
Eq. ~53!# as well as to the growth of already existing aggr
gates@second term in Eq.~53!#.

Taking the integral in Eq.~53! by parts and employing
additionally Eqs.~47! and ~51!, we obtain,

dw

dt
5S ( n i

2

ci
D I 0n~t!; I 05I „nc~0!…. ~54!

Here I „nc(0)… is determined by Eq.~27! and

n~t!5n~t2t0!ut0505~r g1at!35r max
3 ~t!, ~55!

a5 lnS )
i

ci
n i/k`D , t5

t

t̃
5

D*

am
2 S vs

vm
D 2/3

t,

r max~t!5r g1at. ~56!

In Eq. ~55! a small term of the second order inI 0!1 has
been neglected~remember,I 0 is by definition the flux per
lattice site!. Indeed, since we havedw/dt0.I 0 , we get

2ncE
0

t

I 0e2ncw~t0!
dw

dt0
n~t2t0!dt0.I 0

2 . ~57!

In Eq. ~55!, we may setci.ci0 since the variations of the
concentrations remain small in the stage of nucleation.
integration of this equation yields then~with wut5050!

w5S ( n i
2

ci0
D I 0

4a
@~r g1ar !42r g

4#, w~tN!.nc
21,

0<t<tN . ~58!

The time of steady-state nucleation@determined viawnc(0)
>1# is obtained then as

tN
4 5F S ( n i

2

ci
D I 0

a3

4 G21 1

nc
. ~59!

As evident,tN depends weakly onnc
21.

A substitution of the expressions fornc and a @cf. Eq.
~56!# yields in the limitatN@r g ,

tN5
tN

t̃
541/4b23/4S (

i

n i
2

ci0
D 21/4

I 0
21/4. ~60!
6-7
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In order to determine the distribution functionf (r ,t) in
the considered range of cluster sizes,r>g1/352r c , we have
to find first the fluxI (r ,t) given by Eq.~47!. However, in
order to get an explicite expression, we have to find fi
w„t0(r ,t)… from Eq. ~58!. Using r g!at , we have for
ncw„t0(r ,t)…,

ncw„t0~r ,t!…5
w„t0~r ,t!…

w~tN!
.S t0~r ,t!

tN
D 4

5S r max~t!2r

r max~tN!2r g
D 4

. ~61!

It follows from Eq. ~61! that in the considered time interva
(t<tN) and cluster size range@r<r max(tN)#, the quantity
ncw„t0(r ,t)… is much less than unity. For this reason, E
~47! yields

I 5I 0u„r max~t!2r …, u~x!51 ~x.0!,

u~x!50 ~x,0!. ~62!

In the ranger .r g and for nc@1, the interfacial effects as
well as the influence of the diffusion term in the basic eq
tion can be neglected. Then we get from Eq.~34! with
2T21(]DF/]n)@20.5T(]2DF/]n2), (n58nc5r g

3),

f ~r ,t!ur>r g
5I S dr

dt D
21

5
I 0

a
u„r max~t!2r …u~r 2r g!.

~63!

Heredr/dt5a holds atr g52r c , as it follows from Eq.~17!.
We took also into account in Eq.~63! the relation f (r ,t)
5 f (n,t)3n2/3.

This way, the distribution function in the stage of nucl
ation is determined in the range 0<r<r g via Eqs.~28! and
~34!, while for the ranger max>r.rg this function is given by
Eq. ~63! for tN.t.

The number of viable clusters per lattice site, formed
t,tN , is given then by@cf. Eqs.~62! and ~63!, r max5at at
r @r g#

N5E
0

t

I ~g,t8!dt85E
r g

r max~t!

f ~n,t!dn5I 0t. ~64!

The upper limit ofN is given thus by

Nmax5I 0tN541/4b23/4I 0
3/4S (

i
n i

2/ci0D 1/4

. ~65!

The largest size of the clusters, which may be formed
the stage of steady-state nucleation, is given by

nmax
1/3 5r max5atN5 lnS ) ici0

n i

k`
D tN . ~66!

Further, the amount of matterJ concentrated in the evolving
phase, is given atatN5r max@rg by
03150
t

.

-

t

n

J5E
g1/3

r max
f ~r ,t!r 3dr5

I 0r max
4

4a
5

1

nc
S ( n i

2

ci0
D 21

. ~67!

For the change of the concentrations of the different com
nents, we get, consequently,

Dc

ci0
5

ci02ci~tN!

ci0
5

n i0

ci0
J5

1

nc

n i0

ci0
S ( n i

2

ci0
D 21

,nc
21!1.

~68!

This way, atnc(0)@1, the stage of steady-state nucleati
is terminated at relatively small variations of the concent
tions of the components forming the phase. On phys
grounds, this result is a consequence of the exponential
cay of the flux in dependence onncw @cf. Eq. ~47!#. It fol-
lows further that all quantities in the preexponential facto
may be set equal to the respective values in the initial st

IV. THE TRANSIENT STAGE

After the completion of the stage of intensive nucleati
of clusters of the evolving phase, a transient stage of
phase transition begins~for t>tN!. In order to find the clus-
ter size distribution function in the transient stage, we ha
to take into account the following circumstances. First,
initial state for the cluster size distribution is given by th
distribution function formed in the nucleation to the mome
t5tN . Second, in the transient stage we may neglect
diffusion term in the basic equation due to the high degree
smoothness of the functionf (n,t) for t>tN . As will be
shown below, in the ranger .r g52r c ~most of the matter of
the phase is concentrated in clusters having sizes in
range! one can neglect the effect of surface energies as w
This way, in the transient stage, similar to the late sta
@13,14# of the process of phase separation, we may write

] f

]t
1

]

]t F S dr

dt D f ~r ,t !G50, r 5n1/3, ~69!

f ~r ,t!ut5tN
5 f H~t;tN!u~r g2r !1 f H~r ,tN!

3u~r 2r g!u„r max~tN!2r …. ~70!

Here f H(r 0 ,tN) is determined by Eqs.~28! and ~34! for r
<r g and by Eq.~63! for r>r g . The growth ratedr/dt is
given by Eq.~19!. The solution of Eqs.~69! and ~70! reads
f (r ,t)5 f (r 0,0)(]t0 /]t) or

f ~r ,t!5@ f H~r 0 ,tN!u~r g2r 0!1 f H~r 0 ,tN!

3u~r 02r g!u„r max~tN!2r 0…#
]r 0

]r
. ~71!

Here r 05r 0(r ,t) is the characteristic solution of Eqs.~69!
and~70! determined by Eq.~19!. The timet50 corresponds,
by definition, to the beginning of the transient stage.

The characteristic equation is determined from the sys
of equations, Eq.~21!, and the conservation law, Eq.~3!, as
6-8
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dr2

dt
52S vs

vm
D 2/3

am
22Bin , r ut505r 0 , ~72!

Bin5
Di

n i
~ci2cin!5Bjn5¯5B,

) ~cin!n i5k` expS b

n1/3D , ~73!

ci05ci1n iJ, J5E
0

`

f ndn. ~74!

In the transient stage, forn.nc , we may replaceb in→b i`
or cin→ci` , andk` exp(bn21/3)→k` .

For n<nc , an analytic solution for the characterist
equation cannot be found in the general case for arbit
ci(t). However, this range of cluster sizes is not importan
the transient stage. The degree of metastability is decre
mainly by the growth of the large clusters,n@nc(0). Small
clusters, withn<nc , present in the system at the initial mo
ment of time, disappear and give only a small contribution
the supersaturation. The rangen<nc(t) will be characterized
by the growth ofnc(t) and by the dissolution of clusters wit
sizesnc(t)>n@nc(0).

From Eqs.~72!–~74!, we get

cin5ci02n iJ2
n i

DiA

dr2

dt
, A5S vs

vm
D 2/3

am
22, ~75!

)
i

~ci02n iJ!n i)
i

S 12
n i

DiA~ci02n iJ!

dr2

dt D n i

5k`eb/r .

~76!

The main contribution to the characteristic time of t
transient stage gives the time interval whendr2/dt→0 and
r @b, J<Jmax. Here Jmax is the maximum amount~at the
given conditions! of the evolving phase per lattice site. Th
effect is particularly well expressed for a sufficiently hig
degree of metastability in the initial state~e.g., for the limit
P ici0

n @k` in the case of a weak solution!. In this case, the
clusters of the evolving phase as well as the degree of m
stability are sufficiently large, and surface effects may
neglected. The late stage is reached, when the degre
metastability tends to zero. Here surface effects becom
importance, again, and determine the asymptotic beha
@13,14#.

Taking into account above comments, we obtain from
~76! ~employing a Taylor expansion and the conditi
dr2/dt→0! the following sufficiently accurate expression

dr2

dt
5F12

k`

) i~ci02n iJ!n i GF(i

n i
2

Di

1

A~ci02n iJ!G21

.

~77!

At J<Jmax, Eq. ~77! can be written in the form

dr2

dt
52DeffA~J2Jmax!, tN<t<t f ~78!
03150
ry

ed

a-
e
of

of
or

.

with

DeffA5F(
i

n i
2

DiA

1

~ci02n iJmax!
G21F(

i

n i
2

~ci02n iJmax!
G ,

~79!

)
i

~ci02n iJmax!
n i5k` .

Here l f is the length of the transient stage of the process
Note that the precise expression fordr2/dt for a single-

component system is obtained from Eq.~77! in the limiting
caser @b. A similar limiting result may be derived if one o
the components has a diffusion coefficient or a concentra
much less as compared with the other components. In th
latter cases, the process of phase formation is determ
mainly by the behavior of this particular component. In co
trast to the single-component case, each growth step rem
to be characterized by the addition of one structural elem

The number of particles of the evolving phase is give
again, by@cf. Eqs.~65! and ~71!#

Nmax5E
0

`

f ~r 0 ,r !
]r 0

]r
dr.E

r c

r max~tN!

f ~r 0,0!dr0 , ~80!

J5E
0

`

f ~r 0,0!
]r 0

]r
r 3~r 0 ,t!dr

.E
r c

r max~tN!

f ~r 0,0!r 3~r 0 ,t!dr05Nmaxr
3~ t !. ~81!

Here we took into account that, in the transient stage, for
main part of the distribution the inequalityr @r max(tN) holds.
By this reason,r 3 practically does not depend onr 0 .

With Eqs.~80! and ~81!, we may reformulate Eq.~78! as

dr2

dt
52DeffANmax~r 32r max

3 !, r u t5tN
5r 0 , tN<t<t f

~82!

with

r max5~Jmax/Nmax!
1/35nmax

1/3 . ~83!

Jmax is given by Eqs.~80! and ~81!.
In Eq. ~82!, the variables may be separated and we arr

at a solution in the implicit form

E
y0

y ydy

12y3 5
1

3 F ln
12y0

12y
1

1

2
ln

y21y11

y0
21y011

2)S arctan
2

)
~y11/2!2arctan

2

)

3~y011/2!D G5
t

t0
, ~84!
6-9
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FIG. 1. Evolution of the clus-
ter size distribution function
f (n,t) for different stages of the
process: ~a! Establishment of a
quasi-steady-state nucleation fo
the range of cluster sizesn<nc

for t<t r ~left top! in the stage of
nonsteady-state nucleation;~b!
evolution in the stage of quasi
steady-state nucleation~right top!;
~c! evolution in the transient stag
to coarsening~left bottom!; ~d!
evolution in the late stage o
coarsening~right bottom!.
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y0<y5
r

r max
<1; y05

r 0

r max
!1; t0

215
Deff

2
ANrmax.

~85!

After the substitution of the expression for the quantityA, we
have

l 5amN21/3, t0
215Deffl

22~vs /vm!2/3Jmax
1/3 . ~86!

The parameterl has the meaning of the average distan
between the particles of the phase.N is determined via Eq.
~65! andJmax via Eq. ~81!.

Equation~84! shows that, in the main part of the spectru
of phase particlesr ~for y,1!, the termy3 may be neglected
in the denominator. This way, we get

y25y0
212

t

t0
, t05t f . ~87!

In the close vicinity of unity the relative sizey exponen-
tially goes with time to unity,y→1. Consequently, in the
time interval tN<t<t0 a distribution of phase particles i
formed that represents the initial state for the late stage of
process, the so-called coarsening@13,14#. The distribution
function is given in the transient state, in dependence or,
by Eqs.~71! with a value ofr 0 determined by Eq.~87!. We
get

f 5
I 0r 0

ar
u„r max~tN!2r 0…u~r 02r g!. ~88!

The parametera is given by Eq.~56!.
It follows from Eq. ~87! that the range of cluster sizesD,

which gives the basic contribution to the phase in the tr
sient stage of the transformation, is significantly narrow
than the range of cluster sizes that is formed in the stag
steady-state nucleation and that serves as the initial distr
tion in the transient state. Denoting the width of this init
distribution byr max(tN)2tg5Dr0, we may write

D5
r 0Dr 0

A2r max
2 t/t0

.
r max~tN!

r max~t f !
Dr 0!Dr 0 . ~89!
03150
e

e
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In other words, the ratio of the widths of the intervals
determined by the ratior max(tN)/rmax(tf), wherer max is deter-
mined by Eqs.~66! and ~83!, respectively, for the both con
sidered cases.

V. DISCUSSION

The present paper is devoted to the description of
entire course of the evolution of a phase transformation p
cess encompassing both the quasi-steady-state nucle
stage and the transient stage to coarsening in a multicom
nent solid solution. An approach to the theoretical treatm
of this problem is proposed and a complete set of equat
is formulated describing this process. The expression for
effective diffusion coefficient is derived, which determin
the flux of structural units of the phase through the bou
aries of the aggregates of the evolving phase. This coeffic
can be written as a combination of the partial diffusion c
efficients of the different components in the solid solution

All the basic characteristics of the phase transformat
process are determined analytically including the followin
the distribution function of particles with respect to clust
size, the cluster flux in size space, the maximal numbe
phase particles, and estimates of the duration of the diffe
stages of the process.

The degree of dispersity of the system is shown to gr
essentially in the initial, nucleation stage of the process
phase separation. However, at the transient stage, the w
of the distribution with respect to cluster sizes is reduced,
increases again at the later stage, approaching~in reduced
variables! a constant value@13,14#. These results allow one
to vary the dispersity of the evolving phase by terminati
the phase separation at some definite stage of the proce

In addition, the analytic expressions can be utilized
ward the determination of the interfacial free energy~which
can hardly be measured otherwise! by comparing the theo-
retical results with experimental data. Of course, one ha
be sure that the process is dominated, as assumed her
homogenous nucleation.

Numerical solutions of the basic kinetic equations sh
an excellent agreement with the results of the theory~see
@12,15,24,32,46–50# and Fig. 1!.
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The proposed theory can be applied toward the desc
tion of phase transitions in the liquid as well as for the ca
of droplet formation with a given stoichiometric compos
tion.
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APPENDIX: DERIVATION OF BASIC KINETIC EQUATION

Primarily, the theoretical description of the kinetics
first-order phase transitions, proceeding via the mechan
of nucleation and growth, can be given based on a se
kinetic equations of the form

] f ~n,t !

]t
52@ I ~n,t !2I ~n21,t !#,

~A1!

I ~n,t !5nn,n11f ~n,t !2nn11,nf ~n11,t !

5nn,n11F f ~n,t !2
nn11,n

nn,n11
f ~n11,t !G .

HereI (n,t) denotes the flux of phase particles in cluster s
space.

In order to employ these equations, the rates of aggre
tion and emission have to be determined. The rates of ag
gation can be evaluated based on the analysis of the me
nism of growth of the aggregates. Conventionally, the ra
of emission are determined then utilizing the principle
detailed balancing. We avoid here the application of t
principle and use an alternative general method we den
as the method of virtual media~see, e.g.,@36,51,52#!. This
method can be employed in systems, where the amb
phase is in a state of local thermodynamic equilibrium. H
we will summarize the basic ideas of this method in app
cation to clusters of supercritical sizes. The alternative ra
of cluster sizes can be treated similarly~see, e.g.,@36,51,52#!.

Let us consider two different closed systems, one of th
being the phase particle in the real medium and the other
a phase particle in virtual medium. This virtual medium~or
this partly artificial alternative state of the ambient! is de-
fined in such a way that the aggregate of the phase i
thermal equilibrium with the ambient phase. For supercriti
clusters, this virtual state can be constructed by freezin
the position of a certain ratio of the different ambient pha
particles in the solution@36,51,52#. For any aggregate of an
given size~number of structure elementsn! such virtual state
of the ambient phase or such virtual medium may be c
structed@36,51,52#.

The motion of the mobile particles of the different com
ponents proceeds in the same way as for the real state o
system since the potential energy landscape is the sam
03150
p-
e

y

m
of

e

a-
re-
ha-
s

f
s
ed

nt
e
-
e

m
ne

in
l
in
e

-

the
for

both states. During the time of transfer of atoms from o
location in the solution to a neighboring one, or to the a
gregate of the phase, the environment of these particles
not change. This way, the kinetic coefficients, which det
mine the transition velocity from the real (bn,n11) and the
virtual (b̄n,n11) media to the phase aggregate, coincid
Thus, we get

bn,n115b̃n,n11 . ~A2!

The ratio of atoms of the different components, allowed
move in the virtual medium, is determined by the equili
rium conditions~equality of chemical potentials! with the
phase aggregate of sizen. The frequencies of aggregation t
an aggregate of sizen in the real and virtual media have th
form

nn,n115bn,n11Wn,n11 , ñn,n115b̃n,n11W̃n,n11 .

~A3!

Here W and W̃ denote the number of favorable configur
tions allowing the respective process to proceed.

Since the aggregate is, in the virtual medium, in equil
rium with the ambient phase, we haveW̃n,n115W̃n11,n and
b̃n,n115b̃n11,n . For the real system, we may writ
@36,51,52#

nn,n11

nn11,n

5
bn,n11Wn,n11

bn11,nWn11,n

5
bn,n11Wn,n11

b̃n11,nW̃n11,n

5
Wn,n11

W̃n,n11

5exp~DSn!. ~A4!

HereDSn is given byDSn5DSp2DS. It denotes the change
of the total entropy when a structural unit is added to
aggregate.DSp is the change of entropy per structural un
for the phase aggregate andDS the respective quantity fo
the ambient phase.DSn may be expressed further as

DSn52
1

T
@DF~n11!2DF~n!#. ~A5!

Such replacement can be made if the temperature is
changed in the course of transfer of one structural unit fr
the ambient phase to the aggregate. Thus, this replace
can be made in condensed matter only where the ther
conductivity is high.

Thus, usingW̃n,n1151 and Eqs.~A2!–~A6! we get
6-11
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nn11,n

nn,n11
5Wn,n11

21 5expS 1

TD @DF~n11!2DF~n!#.

~A6!

Here DF(n) denotes the difference of the thermodynam
potential, if a phase aggregate of sizen is formed in the
solution.

A substitution of Eq.~A6! into Eq. ~A1! yields
-

o-

r
n
il,

.

03150
I ~n,t !5nn,n11 expS 2
DF~n!

T D FexpS DF~n!

T D f ~n,t !

2expS DF~n11!

T D f ~n11,t !G . ~A7!

By a Taylor expansion of the second term in the brack
in the right-hand side of Eq.~A7!, we get in a first approxi-
mation and forn@1, Eq.~1! is used as the basic equation f
the analysis presented above.
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