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Kinetics of formation of a phase with an arbitrary stoichiometric composition in a multicomponent
solid solution
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A kinetic theory of nucleation and growth of a evolving phase with a given stoichiometric composition in a
multicomponent solid solution is developed. It is assumed naturally that the phase grows as a result of
individual atom incorporation into the phase domain in a stoichiometric ratio. As it is shown, for the case of
phase formation in a multicomponent system the basic kinetic equations, describing the nucleation-growth
process, can be reduced formally to the respective expression derived for nucleation-growth processes in
one-component systems. However, the effective diffusion coefficients and the effective supersaturation are
expressed as nontrivial combinations of the thermodynamic and kinetic parameters of the different components
involved in the phase formation process. In the determination of these properties, the theory is not restricted in
its applicability to perfect solutions but extended to phase formation in real mixtures. Thus, the theory may be
applied directly towards the interpretation of experimental data. In the present paper, particular attention is
devoted to the analysis of the two stages of the overall transformation prétesise stage of quasi-steady-
state nucleation an@®) the transient stage of coarsening. As the results of this analysis, the quasi-steady-state
nucleation rate, the number of clusters formed via nucleation and growth, and the time evolution of the cluster
size distributions are established. Moreover, estimates are given for the duration of the different stages of the
transformation process.
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I. INTRODUCTION Gunton, San Miguel, and Sahif22], Schmelzef23], Weh-
ner and Wolfer{ 24], Schmelzer and Ulbrichit25], Ulbricht
A large number of studies, including several monographset al. [26], Barrett and Clement[27], Tokuyama and
have been devoted to the investigation of the kinetics oEnomoto[28], Grinin[29], Kuni, Grinin, and Kurasoy30]).
first-order phase transitiod—16]. Nevertheless, a number As it has been showncf. Schmelzer and co-workers
of problems remain unsolved as yet. [23,25,28), depletion effects affect nucleation quantitatively
As a further restriction in the applicability of the theory to and determine qualitatively the whole course of first-order
experiment, most of the previous analyses are devoted tphase transformations proceeding by nucleation and growth.
single-component systems. Homogeneous binary nucleatios the result of such depletion effects, in particular, only a
is more complex as single-component nucleation. In partfinite number of clusters develop in the syste(of.
these complications arise from uncertainties in the knowl-Schmelzer and co-workef81,32, Slezov, Schmelzer, and
edge of the composition of the critical clusters and the re-Tkatch[33]).
lated problem of the compositional dependence of the critical An extended theoretical analysis of the kinetics of phase
cluster surface tension. These limitations in the applicatioformation of single-component systems via nucleation and
of the theory to experiment are even more pronounced in thgrowth has been given previously [184]. In the present
case of phase formation in multicomponent systems. paper these analyses are extended to multicomponent sys-
Moreover, in the majority of previous studies, attention istems. In order to remedy various problems encountered in
directed mainly towards the determination of the so-calledhe description of phase formation an additional assumption
steady-state nucleation rate or, in other words, the steadys employed; it is assumed that the new phase has a well-
state flux in cluster size space. Steady-state conditions can loefined but arbitrary composition. Using this assumption, the
realized in real systems, however, only for limited periods ofkinetic equations governing nucleation and growth, can be
time or when the state of the solution is artificially main- reduced to a relation identical in its form to the respective
tained constant by some appropriate real or supposed mechexpression for phase formation in single-component systems
nism (cf., e.g.,[1,12)). [35-37. However, as will be shown in the course of the
In most cases of interest, the degree of metastability or thanalysis, the effective diffusion coefficients and the effective
state of the ambient phase changes in the course of the phasgpersaturation have to be expressed as nontrivial combina-
transformation because of depletion effects due to clusteions of the thermodynamic and kinetic parameters of the
formation and growth. Different aspects of the effect ofdifferent components involved in the phase-formation pro-
depletion on the course of first-order phase transitions haveess.
been studied by various authofsee, e.g., Tunitski[17], In the analyses, we assunfef. [33,34)) that, for the
Wakeshimd 18], Binder and Stauffef19,20, Rusano21],  whole course of the process of nucleation, at any instant in

1063-651X/2002/663)/03150613)/$20.00 65 031506-1 ©2002 The American Physical Society



V. V. SLEZOV AND J. SCHMELZER PHYSICAL REVIEW E65 031506

time a quasi-steady distribution function with respect to theprovides a complete quantitative description of the entire
size of the phase particldgn,t) is established in the range course of first-order phase transitions in multicomponent sys-
of cluster sizes £n=n;. Here n denotes the number of tems.

structural unitdor, quasimoleculgsn an aggregatéor clus-

ter) of the evolving phase, anul, is the critical size of the Il. BASIC SET OF EQUATIONS

aggregate. The critical cluster is an aggregate of phase par-

ticles in unstable equilibrium with the solid solution. Its size . L . " o ; ,
given stoichiometric composition. The stoichiometric coeffi-

changes with variations in the state of the ambient phase. *. i i~ving th " f1h Vi h
Similarly, the quasi-steady-state distribution with respectClen S specifying the composition of the evolving phase are

to cluster size in the range<n, is determined by the cur- denoted byv; and the number of basic structural units in the

rent state parameters of the solid solution. In other words, fo?IUSter or aggregate of the evolving phase glv_emby .
the range of cluster sizes<n_, the time of adjustmertt of . The volumeV of an aggregate of the evalving 'phase 1S
the distribution functiorf(n,t) and the fluxi (n,t) in cluster glvlen thefn bytV:tnwsl Wl'th ws:z_ivtir:"i : |—||ere wsf ',; t?ﬁ
size space to the current state parameters of the solid soluifp'ume of a structural elemend; is the volume of tha

is much less when compared to the characteristic times o omponent in the ambient solution and in the evolving phase

variation of these parameters. Generally, these conditions a €., we do not consider d!ﬁerences n t.he respective vol-
valid. umes in bo_th phases resultlng from elasgc_ stre)sses_ _
In line with the classical approach, we assume that the The basic system of equations, describing the kinetics of

aggregation formation process of the evolving phase pro'—ﬂ'UCIe‘Eltion and growth, are given ligee[35-37 and Ap-

We consider processes of formation of a phase with a

ceeds via incorporation and emission of individual structuraPend')Q

units exclusively. This way, the smallest aggregate of the af(n,1) al(n,t)

evolving phase corresponds to=1. Further, we go over = ey

from a discrete description in terms of a set of kinetic equa- Jt an

tions to a continuous description in terms of the Frenkel-

Zeldovich equation. In the domain of cluster sizesn, (nt)=—» (r?f(n,t) N 1 JAD fn) @
> 1, we focus on the continuum description which is reason- ’ mEH gn T on )

able approximation. Moreover, the properties of the aggre-
ates of the evolving phase approach the properties of their .

?espective bulk phageg. PP Prop f(”'t)|nH0:H ¢, f(nYli=on=1—0, @

The kinetic equations are applied to the region of cluster

sizesn=n_ as well but mainly in order to derive an estimate w

of the time to establish quasi-steady-state conditions and to Co.=Ci(t)+ viJ f(n,t)ndn. 3

obtain the boundary conditions mt=n.. Thus, the approxi- 0

mations arising from the application of the kinetic equations

to very small clusters are of minor importance for the results The first set of equations Eqgl) _descrlbe the evolut|_on
of the analysis outlined below. of the cluster size distribution functidi{n,l) and the flux in

Once the stage of nonsteady-state nucleation is ¢ier cluster size spacé(n,t). The di_st.r!bution fqnctionf(n_,t)
stage of approach of quasi-steady-state conditions in th@as to obey the. boundary and initial conditions as given by
range of cluster sizes<n, in cluster size spaggthe further Eq. (2. H_ere Itis assume_d that the system can be brought
evolution can be divided into a stage of dominant quasi_suo!denly into the respective metastable initial state. Aggre-
steady-state nucleation followed by the stages of independeﬂfmOn phenpmena and th?'r effects on the phase formation
and competitive growtti13,14. The present analysis is de- Pro¢€ss, which may oceur in _th.e. course of the transfer of the
voted mainly to the description of the stages of quasi—steadys-ySte.rn mtp the considered initial state, are excluded 'from
state nucleation and independent growth. For these Stage(,‘50n5|dera'[|on(for the account of such _addltlonal_ transient
the evolution in time of the basic characteristics of theeﬁeCts cf., €.9.[38,39 anq refe_renges .C'ted thergin
nucleation-growth process is found in form of the distribu- | "€ Number of nucleation sites is given Bn—01) and
tion functions with respect to cluster sizes and the sizelS determined by the number of configuratiokisc;' that
dependent flux in cluster size space. Further, the number dhay result in the evolution of the structural element of the
clusters of the phase and their average size at the end of tigyolving phaseT is the temperature in energetic unite.,
independent growth stage are determined as a function of tHeT).
initial system supersaturation. Finally, estimates for the du- Further, conservation of the total number of particles re-
ration of the stages of quasi-steady-state nucleation and isults in the set of balance equations E@ for the different
dependent growth are provided. components forming the evolving phasgis the actual con-

The state of the cluster ensemble at the end of the nuclesentration and;, the initial concentration of thith compo-
ation and independent growth stages simultaneously represent in the solution. Note that all concentratianss well as
sents the initial state for the process of competitive growththe distribution functionf(n,t) refer to the respective num-
The theory of competitive growth or coarsening was develbers per single lattice site.
oped for the first time by one of the authors in cooperation In order to solve the given system of equations, one has to
with Lifshitz and Slezo\{13,14). Thus, the present analysis specify the coefficients of aggregatief ,.,. As shown in
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[35-37, these coefficients can be expressed via the macraesulting in
scopic growth ratesin/dt and the derivative {A®/dn) as

4/3
dn IAD A¢T(”°) = gnﬁ’s, AD(Sr)=—2BnZ", onc= \/6%,
TR S 4)
(10
Here @A®/on) is partial derivative ofA®. A® is the
change of the thermodynamic potential if in the solid solu- 1 3*Ag(n) . 1 _ B _uis 11
tion an aggregate of the evolving phase withstructural 2T  on? o 5_n§_ Enc ' 1D
elements is formed. Both the aggregate of the evolving phase n=e

as well as the solution are considered to be in a state ofhe quantitysn, describes the range of values in the vi-
internal thermal equilibrium while the system as a whole iscinity of the critical cluster size, where the relation
in a nonequilibrium state. The change of the characteristiad(n,) — Ad(n)<T holds.
thermodynamic potentiaA®, due to the formation of such The expressions for the aggregation coefficients, ; ,
an aggregate witm structural elements, can be expressedcan be found from the analysis of the mode of aggregation of
then as the clusters. For the small-sized clusters, prevailing in the
stage of nucleation, the growth is limited kineticallg.g.,
+4maon?? (5) [34,3ﬂ). In the transient stage, the aggregates of the evolv-
ing phase are sufficiently large, so that the growth datédt
and the aggregation coefficients can be found from the solu-

A(I)=n< ps= 2 vig
I

We obtain then immediately tion of the diffusion equation.
AD 2 In order to arrive at the respective expressions, we have to
E J _ E s_z a4 gn-18 _ 8_77 785 take into account first that the partial fluxgsof individual
M >, Viki |t BN . B . ) :
T on T . 3 T components have to fulfill the relatiof35-37,40,41
(6) o
Bk 12

In above equationsy® is the chemical potential per struc- vi v

tural element in the phasg, is the chemical potential of the N ) S
ith component in the solutiom= (3w/47)*3 is the char- In addition, we may write down for any partial flyx[37,42
acteristic size parameter of the structural elementis the s

o : i ) 1 0AD
specific interfacial energy of the aggregate of the phase in the7R?j, =

. N 7. ~ Vn r”ﬁ'l? TSy
solution. Note that, since the composition of the aggregates i

and the specific volumes of the different components are ~ 23 2/3

. . 3a;D{Cin ®

independent of cluster size, the surface energyas to be - ZITI ( S) [wi(C)—mi(cad], (13)
considered as independent of cluster size as well. am

The size of the critical aggregate for a cluster, being in

unstable equilibrium with the ambient solution, is deter- Aq)szz nilpi(Cn) = mi(TD1, %= vimi(Cai)-
mined via @A®P/on)=0 or via [ i
(14
ng’3:L (7 Here u° is the chemical potential of a structural element of

?Vif“i g the phasey;(c,;) are the chemical potentials of the particles
of the ith component in the solution in equilibrium with a

For a weak or perfect solution, wherg = +TInc clus_ter of size_n, wi(c;) are th_e chemical_ po_tential_s of th_e
holds, we get, in particular, partlc_le_s.of thath component in the solution in the immedi-
ate vicinity of the aggregatdc,;} represents a set of con-

= result in an equilibrium with an aggregate of sizewhile

B ws— i vithi centrations of the particles of the different components that
Fe=Ng =—r—, ke=eXpg———— 8
In( iy ) {ci} represents the set of concentrations in the vicinity of the
K- surface of the aggregate. We get
Here with k., the chemical equilibrium constant has been JADS 1
introduced. an; __?[:Uvi(ci)_ﬂi(cni)]y
For any arbitrary value of we may write immediately
3aiDi~ 0)5)2/3 213 15
=——70i| —]| n~
1A T Ad(n)  pn +§Bn2/3 Vi n+1= gz G| o (19
T on c T nRr 2P

¢ Here Vi, ni+1 is the frequency of incorporation of particles of

_ i PAD _ B ) the component into the phase aggregates, is the sticking
2T on? — 6n*® coefficient (O<a;<1), D, is the partial diffusion coefficient
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of the component, a,, is the lattice parameter of the matrix fusion equation and the effects of the motion of the interface
(wom=4ma3/3). The radiuR and the particle number in the may be neglected14,33 (with an accuracy of the order

aggregates are related vie= (47R%/3w,), ws=4ma’(3. ci/c;<1, wherec} are the concentrations in the solution in
For the rate of growth of an aggregate of sizewe get  equilibrium with a macroscopic aggregate of the evolving
from Eq. (12) and equationvs="3;v;w; phasg. In such case, we have
dn 4’7TR2 J dn ji Wg 2/3Di Ci_’éi
—= Jji=4mR— —=47R?>==3| —| — ——n'3 21
TR 2 o= 4mRE . (16) n o 3o 2 (21)

As the next step, we insert EGL3) into Eq. (16). After-  From Egs.(13) and (21) we arrive at the following expres-
wards, we may divide the equation at the coefficient in frontsion for the determination of the concentratids(for the
of the term[ «(%;)— mi(c,)], multiply the resulting equa- case of a weak solution
tion atv;, and take the sum over all valuesioAs the result,

. T 1 ¢-T
we obtain In(cf') = —m= (22)
dn  3D* [ wg|? e |
9t a2 w—) N2 wil wi () — mi(Cai) ], Equations(13) and(22) and the equilibrium conditions at
m m [

the interface of an aggregate completely determine the sets
of concentrationg¢;} and{c,;} for the stage of nucleation.
. (17) In the limit &;n*3<1 (which is usually fulfilled in the stage
a;D{T of nucleation, we gefC;=c; [cf. Eq.(22)]. In this case, it is
more convenient to employ E¢L9) for the determination of
the growth ratedn/dt with the replacements;—c;,

4

1
o>

In the limiting case of a weak solution, we get, in particu-

. IS, I6)=In(c; /). | |
M(c;)" In the transient stage, when the size of aggregates is suf-
D ficiently large(i.e., the inequalityr;n*>1 hold9, the rela-
Ad=-—nln K +4moain?? tion T;=c;, is fulfilled [cf. Eq.(22)]. In this case, one has to
* employ directly Eqs(21) and (22) for the determination of
dn/dt.
Kn= H (Cin)"i= kace'B/(nlB)y
i Ill. THE STAGE OF NUCLEATION OF CLUSTERS OF
AD it (18 THE EVOLVING PHASE
|
W:_m( K, ) The description of the kinetics of nucleation is signifi-
cantly simplified after the time interval when a quasi-
resulting in steady-state flux in a cluster size space is established in the
range G=sn<n, (e.g.,[33-35,37,43. Indeed, in this case it
dn JAD  3D* [ wq 32 o3 Hici”i is possible to employ a simpler version of the basic equation
at . VT T oz | ) n="In K|’ Eqg. (1) for the determination of the flux in cluster sizes space
moLm " (19 I(n,t). The respective relation is valid in the whole stage of
steady-state nucleatiort,<t<ty. Hereby, the boundary
dn  3D* [ w |23 o | 1 1 conditiong for the flux in the r_a'ngesgnsnC may be ex-
G a2 w—) n ,B(n—l,g— n—l/g) , pressed via the boundary condltllons for the dlstrlbqtloq func-
m m c tion f(n,t). Once the fluxi(n,t) is known, the distribution
3D* [ o. | 22 function f.(n,t) can be found straightforwa.rdly. .
Vnne1=—o _5) n2s3 (20) An estimate of the time lat can be derived in the same
’ ay | On way as outlined if33,34]. We get
Equations(19) and (20) describe the flux of particles to 5 a2 [ wy)23n?3
the aggregates of the evolving phase in the immediate vicin- =3 p* v B (23

ity of the aggregate. The concentrations of the different com-

ponentsc; in this region are determined by the interplay of An overview of different alternative attempts to estimate this

losses by aggregation and input fluxes due to the diffusiomuantity is given, e.g., iil12,44,45. The results, obtained by

from the distant environment. For the determination of theselifferent methods, deviate only slightly.

concentrations, the respective diffusion problem has to be After the completion of the transient stage to steady-state

solved self-consistentlf14,43. nucleation, the equation for the determination of the flux in
If the concentrations of the different components in thecluster size space may be written in the foi83—35,44

phase and the ambient solution differ considerably, then, in

order to find the rate of growth of the aggregates of the al(n,t) #l(n,t) 10A® 4l(n,1)

phase, one may employ the steady-state solution of the dif- gt el gn2 T dn an

(24)
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with the boundary conditioris(n,t)ln:nczI(nc). Hereby we tion is different. There we havé(n,t)<0 for n<n, and

chose the moment of time=0 as corresponding to the be- 1(n,t)>0 for n>n;. It follows that in the stage of nucle-

ginning of the stage of steady-state nucleation, i.e., we mak@tion one may determine the functiohé,t) for different
the replacemertt—t, —t. ranges ofn values by different methods and take as the

In the derivation of Eq.(24), terms of the order boundary conditions the values determined via the solutions

(cle)1(allat)~t=(ty/ty)<1 have been neglected, whege at the left hand side of th_e respective ir_1terva|s_.
is the characteristic time of change of the concentration in In order to proceed with the analysis, we introduce the
the solution. During the time of steady-state nucleatipthe ~ dimensionless timer=t/t with T *=D*a_ *(ws/wy)?".
change of the concentration in the solution is insignificant for-urther, we note that in the rangesh/n.<8 the quantity
the caseng|;—o>1. Equation(24) is valid thus for any mo- A=3[(n/ny)*3+(n/n.) Y3+ 1] ! varies only in between
ment of timet<ty or whenl (n,t)>0 holds for any value of the limits from 1 to 6/7[34]. Consequently, in this range
n. In this stage, the number of supercritical clusters increasesf cluster sizes we may setn¥¥(n~*—n ¥¥=—(n
Fort=ty, the quantityl (n;) becomes practically equal to —n )n_?3 andA=—(n—n)n_ ?°.
zero and the process of formation of clusters is terminated. ¢ kinetic equation fok(n, 7)
Thelr'number remains then nearly cpnstant at the subsequemtiS range of cluster sizes as
transient stage to coarsening for a titlpe-ty . Fort=t; the

=1t can be written then in

further evolution is governed by processes of competitive I I 2|
growth or coarseninfj13,14] A__F (n—n )(9—+3n2’3— (29
e gr nZBY T¢gn Ve gn2

In the considered stage of steady-state nucleation, , it
is possible to expresg(n,t) via I(n,t) as[33-35 ~
||n:nc:|(nc):|0t! I(n;7)|n>nc,7:0:0- (30

Ad(n)
T

o Ad(n")| I(n";t) |
fn ex% T )yn,'n,ﬂ n The replacemenn?®—n2? in the second term on the
(25) right hand side of Eq(29) decreases the diffusion contribu-
tion to the flux forn>n.. However, in the considered range
With I(n,t)=1(n), O=n=nc+Jn; and the boundary con- this contribution is smal[33,34. In the vicinity of n=n,,

f(n,t)=ex;{—

dition for f(n,t) atn—0 we get the replacement represents a quite accurate approximation.
ADON Ln’ ¢ In order to solve Eq(29), we make the ansat4 (n, )
I Cim:f eXF,( (n )> (Y 4 Ad(0)=o0. —I1[(x,7).t(n)]) and determine the functions andt(r)
i 0 T Vn’,n’+1 via
(26)

y=(n—ng)exp—87), 6=pn; 23,
Since A®d(n) has a sharp extremum at=n. [Ad(n)

=Ad(n)—T(n—ng)?6n,2>1], we get with Eq.(11) 3n2/3
t(7)= ——(1—e 2%7), (31)
3,8 D* ws 2/3 , A(I)(nc) 26
I(ng)= ol o Hci'ex T ] o
Tam \ Wn i After this substitution Eq(29) takes the form

(27)

a Pl
Equation(27) is reduced, evidently, to the respective expres- —=— ||n:nc: I(ney), |(n,7-)|n>nC’T:0:0

2
sion for the steady-state nucleation rate in single-component at Iy

systems in the limiting case of segregation of only one com- (32)
ponent. ith th wuti

For n<n., in Eqg. (25 the maximum ofA® is located W € solution
inside the limits of integration. Moreovel,(n,t)=1(n;) y e %(n—ny)
holds and we get I=1(ng) 1—erf<—> =1(ng) 1—erf<—C ) :

2\/E 2\t(7)
. Ad(n)|1 n—ng
f(n)|n<nc—]__i_[ c, exp{— — |3 1—erf( 5. ) : a3

(29 It follows that after a timer,=1/6=7, in the rangen.<n
<g=8n, a steady state with the flux=1(n;) establishes.

Here erf)=—erf(—x) is the error function. Thus, the time of establishment of the steady-state conditions

In the limiting case of a saturated system, we haye in the rangen<g=28n, is of the same order as the time of
—oo and Eq.(28) is reduced to the well-known steady-state establishment of the steady state during nucleation in the
cluster size distribution in an equilibrium state. range Gsn=<n;.

In the stage of nucleation, we halgn,t) >0 and for any The distribution function over cluster size in the range
given value ofn this quantity is determined by the respective n,.<n=g==8n, can be derived from Eq25) via a Taylor
values amn’<n. In the later stages of the process, the situa-expansion oA®(n) in the vicinity of n
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lo @ 1 proximations result in some additional broadening of the
f(n,7)= J exp — T [A®(n)—Ad(n")] dn’ front of motion of the aggregates in cluster size spd@ze-

Van+1Jn 36].

I p a\l .. As a next step, we redefine the variablevia r=n'?
= —|1—erfl =||e?7“4P?, (34  —g'® The solution forl is expressed further as
2Vn’n+1 b 2b
1 0A® 1 PAD | p(3,g ) p( 332) (r,7) (39)
_ - =" __ =" =exp 5 pbrre|expg — - p°7|p(r,7).
a=—3 o =0, b 5T anZ >0, n=ng. 2 4

(39 A substitution of this expression into E(B8) results in the

The functionf(n,7), determined via Eq(34), goes over following equation for the functiom(r, )
continuously into the expression derived via E28) for n p op2
=n.. This way, the_ boundary conditions fo¢n, ) =1(n;) _p:(grg)—l_pz__ (40)
hold after the time intervat=2r, atg=8n,. aT or
In the rangen=g, it is also possible to simplify further , ) .
the kinetic equation29) describing the time evolution of The solution of Eq(38) with the boundary conditions Eq.

I(n,7) and obtain an exact analytic solution. However, one(37) reads then

has to account for the decrease of the degree of metastability —12
of the system due to the continuous formation and growth of | = (0))e3ﬁrrc/2i(l) f exp{—ny(0) (')
the already formed supercritical clustédepletion effects ¢ 21\3r; 0

In this way, an expression for the time interval of dominating
steady-state nucleation may be obtained.

dr’
—3B%(t—)A=3r2t2[4(r— )]} —— .
In the range of cluster sizas=g=8n., we get for the A=) A= )]}(T—T )¥2

case of a weak solution (41)
AQ(nc) — A(I)(nC(O))+n (0)e, With the variable z=rr [4/3(r—7')]" 2 we may write
T T ¢ down the expression fdrin the form
_ Ci(T) " 2 o
e(n)=-In H (C.(_O) (36) =1 (nc(o))\/_; I exd —nee(7—3r?r2z-2/4)]
Herec;(0)=c;q is the initial concentration of the particles of X exf — (38rr .z~ Y4—2)?]dz
theith component in the solution. These quantities obey the
inequality c;g=c; . 2 .
The boundary conditions at=g may be written in the =I(nc(0))\/—_exr[—nc<p(r—rrc,8 )]
form .
I(nc)=1(ne(0))exd —nc(0)e(7)]. (37 X f exd — (3Brr .z Y4—2)?]dz (42)
2(7' =0)

As evident from Eq(37), for n,(0)>1 a small change of ) i _
the quantitye results in a significant decrease of the nucle- N Ed- (42), the second term in the first expression has a
ation rate. Processes of nucleation are terminated practicallgnarP maximum a=z,. In the vicinity ofz, we may write
if the condition¢(ry) =1/n,(0) is fulfilled. down

In the considered range of cluster sizes, the equation for

i ; 3 grr 2 /(3
the flux may be formulated most conveniently when the vari- (2, :(_ C—z) ~A(7—7)2. z.= (_ rr )
abler=n'?is employed34—36. We get @={373 (2=20)% 2 4B
(43)

al Ba 1 &
a7 roar + 32 ar? (38 with such approximation, we arrive at

where the boundary condition is given by Eg§7). 2
In Eq. (38) several terms are omitted that are small in '(n’T):'(”c(o))exF[—ndP(To(n,T))]\/—;

comparison to g/2r.)/(dllar) [i.e., (2 3/3)(dl/dr) and

(BIr)(allar) for B>1]. Moreover, the substitution r3? o 2 et

*}3"0_2 is made(in the considered range the inequality XL exp(—§'°d¢’),

>2r. holdg. Such approximation results in a sufficiently

accurate description of the spectrum of the viable nuclei, r

which give the dominating contribution into the law of con- E=2[z(7' :0)_20]:2<_°_ Zo), (45)

servation of particle numbers. However, the mentioned ap- Var!

(44)
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-1 rC
To(N,7)=7—I1 B =7—(r—rg) —,

B
Fmad T) =T g+ Bro s
(46)

7o(I max, 7) =0, To(q1/3- T)=

Here the redefinition of has been taken into account (

—>r—rg).

rma{t) describes the motion of the cluster front in cluster

size space along the characteristic solution of @4). The

PHYSICAL REVIEW 65 031506

wheredn/d7= —dn/drg is the rate of growth at the moment
of time 7 of those aggregates of the phase, which have grown
up to the sizeg at the moment of timery, nl|, - 0=

r,— =T This way, we get the following expression fer
d v, dc; v? T dn
—Ei: c dr (E < |9_J0|(7’0)d_7_0d70 :

(53

Equation(53) has a clear physical meanilicf. also[34—

diffusiveness of the front is determined by the integral termgg)). The decrease of the degree of metastabifitis due,

in Eq. (44). This integral is practically equal to unity far
=0 and equal to zero faf=0. Approximately, we may write
thus

I(n,7)=1(n¢(0))exd —n¢(0) @(7(N, 7))] O max(t) —T)

(47)
with

! 0

Mma{t)=rg+ AT —=r +In(H C—');
r‘C

o(x)=1(x>0), 6(x)=0(x<0). (48)

Since the broadening of the front of motion of the clusters

in cluster size space is small, we may employ &q) for the

application of the laws of conservation of the numbers of

particles. These laws can be written as
i c
=—In]] ( ) => vlln( '0),
i Cio i Ci

Cio:ci—f—vif nf(n,7)dn, (49)
0

o Jw afd B | Jrl an d
Gi=—wi| ngpdn=-w (19— . (TO)ﬁ_To 7o)
(50)
By definition of the quantityrg(n,7) we may write down
[employing Eq.(44)]
3

H

(51)

N(7—1g) = (7' 7o)

With Eq. (51), we may go over in Eq49) from the variable
n to the variablery(n,t). We then get

*© Nmax
f |(To(n,7'))dn=f I(79)dn
¢} g
jro(nmax,r)zo
T0(Q,1)=17

dn
f I(To) d’To,

dn
|(70) g—do

(52

both, to the formation of supercritical clustdifgst term in
Eq. (53)] as well as to the growth of already existing aggre-
gates[second term in Eq53)].

Taking the integral in Eq(53) by parts and employing
additionally Eqs(47) and(51), we obtain,

by j)w 9i 1o=10(0). (54
Herel(n.(0)) is determined by Eq27) and
() =n(7=10)| ;=0=(rg+an’=rp (1), (55
a=|n(H ciVi/kx), 7=;=§ &)mt,
! t aml\onm
Mmad T)=rgtar. (56)

In Eq. (55 a small term of the second orderlig<1 has
been neglectedremember,, is by definition the flux per
lattice site. Indeed, since we havép/dro=1,, we get

(57)

T d(p
- ncJ’ IoeinC@(TO)d—n(T_ To)dTO:I(ZJ :
0 70

In Eq. (55), we may set;=c;, since the variations of the
concentrations remain small in the stage of nucleation. An
integration of this equation yields théwith ¢|,_,=0)

(=2

Cio

0 _
E[(rg+ar)4—rg], e(my)=n; 1,

(58)

Os7r=1y.

The time of steady-state nucleatifaetermined viapn,(0)
=1] is obtained then as
z L'z I 3 B
04

1
c P (59

As evident,ry depends weakly onc’l
A substitution of the expressions for, and a [cf. Eq.
(56)] yields in the limitary>r,,

t
?N = 4143304 (60)
t

™™

2\ —1/4
D b |- 14
o e

i Cio
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p2\ 1
2—') . (67

Cio

4
m Ormax_ 1

ax I
3dr=
f(r,7)r>dr 1a n

the considered range of cluster sizes,g'*=2r, we have =1 .
9

to find first the fluxI(r,t) given by Eq.(47). However, in
order to get an explicite expression, we have to find firs
@(7o(r,7)) from Eq. (58). Using ry<a,, we have for
nC(P(’To(r,’T)),

In order to determine the distribution functiditr,r) in Jr

tFor the change of the concentrations of the different compo-
nents, we get, consequently,

o (ro(1,7) <To<r,r>)4 Ac_cio=cilmy) _vioy 1 Vio( V?)l<n_1<1
neg(ro(r, )= ~ = o e\ 2o, he<il
CqD( ol ) o(1y) ™ Cio Cio Cio N¢ Cio Cio 69

Fmad T)—T |4
=\r =t (62) This way, ain,(0)> 1, the stage of steady-state nucleation
ma g

is terminated at relatively small variations of the concentra-

It follows from Eq. (61) that in the considered time interval tions of the components forming the phase. On physical
(r=7y) and cluster size ranger<r,..(n)], the quantity ~9rounds, this result is a consequence of the exponential de-

nee(ro(r,7)) is much less than unity. For this reason, Eq.Cay of the flux in dependence an¢ [cf. Eq. (47)]. It fol-
(47) yields lows further that all quantities in the preexponential factors

may be set equal to the respective values in the initial state.
=100 mad{7)—T), 6O(x)=1 (x>0),
IV. THE TRANSIENT STAGE
80=0 (x<0). ©2 After the completion of the stage of intensive nucleation
In the ranger >r, and forn.>1, the interfacial effects as of clusters of the evolving phase, a transient stage of the
well as the influence of the diffusion term in the basic equaphasfe transition begirior 7= 7). In order to find the clus-
tion can be neglected. Then we get from E&4) with ter size _d|str|but|on function in _the transient stage, we have
—T-Y(gAD/an)> —0.5T(PAD/In?), (n=8n,=r3) to 'Fake into account the follpwmg circumstances. First, the
' g initial state for the cluster size distribution is given by the
AR distribution function formed in the nucleation to the moment
f(r,7)|=, =I(—) =— 0N ma{(7)—1)O(r—rg). 7=71y. Second, in the transient stage we may neglect the
¢ dt a diffusion term in the basic equation due to the high degree of
(63) smoothness of the functiof(n,7) for r=r7y. As will be
shown below, in the range>r = 2r (most of the matter of
the phase is concentrated in clusters having sizes in this
range one can neglect the effect of surface energies as well.
This way, in the transient stage, similar to the late stage
[13,14 of the process of phase separation, we may write

Heredr/dt=a holds atry=2r, as it follows from Eq(17).
We took also into account in Eq63) the relationf(r,7)
=f(n,7)3n?"3,

This way, the distribution function in the stage of nucle-
ation is determined in the range<0 <r via Egs.(28) and
(34), while for the range ,,,=r>1 this function is given by

of  o1/d
Eq. (63) for 7> 7. —+ — (—r f(r,t)|=0, r=n' (69)
The number of viable clusters per lattice site, formed at Jr  dr[\dt
7<7yn, IS given then by[cf. Egs.(62) and (63), r=ar at
r>rg] f(r,T)|T:TN:fH(T; TN)G(rg_r)+fH(r,TN)
T Fmas(7) X O(r—r4) 00 maf 77) —T)- (70
N=f I(g,r’)dr’=J f(n,r)dn=lor. (64 @ 0 mad T
° o Here fy(rg,7y) is determined by Eq928) and (34) for r
The upper limit ofN is given thus by <r4 and by Eq.(63) for r=ry. The growth ratedr/dt is

given by Eqg.(19). The solution of Eqs(69) and (70) reads
1/4 f(r,7)="1(rq,0)(drg/d7) Or
Nmax=|oTN=41/4ﬂ_3/4|g/4(2 vizlcio) . (65
I f(r,)=[fu(ro,mn) 0(rg—ro) +fu(ro,m)

The largest size of the clusters, which may be formed in aro
the stage of steady-state nucleation, is given by X O(ro—rg) O(r maf ™) —T0)] o (72)
nB_p o :In( ITicig - (66) Herery=ry(r,7) is the characteristic solution of Eq&9)
max T max— SN ko, | "N and(70) determined by Eq(19). The timer=0 corresponds,

by definition, to the beginning of the transient stage.
Further, the amount of mattdrconcentrated in the evolving The characteristic equation is determined from the system
phase, is given a7y="rma>Tg by of equations, Eq(21), and the conservation law, E(B), as
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dr? ws |2 with
_:2(_ an’Bin, rl,—0=To, (72
dt O . ,
A=|> —; _on
Di DA (Cio— ¥dmad | | T (Cio— ¥idmar) |’
BIHZT.'(CI Cin):B]n_"':Ba [ ma; i iYma
|
(79
" B
IT (cin) "=k ex T/ (73 |
l_i[ (Cio— ¥idma) =K
Co=CitnJ, J= jo fndn. (74) Herel; is the length of the transient stage of the process.

Note that the precise expression fbr?/dt for a single-

In the transient stage, for>n., we may replaces;,— 8.  component system is obtained from Eg@7) in the limiting
or Cin—Ci.,, andk., exp(Bn ¥ —k., . caser> . A similar limiting result may be derived if one of

For n<n,, an analytic solution for the characteristic the components has a diffusion coefficient or a concentration
equation cannot be found in the general case for arbitrarynuch less as compared with the other components. In these
ci(7). However, this range of cluster sizes is not important inlatter cases, the process of phase formation is determined
the transient stage. The degree of metastability is decreas&ainly by the behavior of this particular component. In con-
mainly by the growth of the large clusterss>n,(0). Small  trast to the single-component case, each growth step remains
clusters, withn=<n,, present in the system at the initial mo- to be characterized by the addition of one structural element.
ment of time, disappear and give only a small contribution to  The number of particles of the evolving phase is given,
the supersaturation. The range n.(t) will be characterized again, by[cf. Egs.(65) and (71)]
by the growth ofn,(t) and by the dissolution of clusters with

sizesn,(7)=n>n¢(0). f @ ~frmam>
From Eqgs.(72)—(74), we get Nma= | f(ro,r) ——dr 5 f(ro,0)drg, (80

B yodrl e\, . o
Cn=Com T Rar ATlg, A (9 :ff<ro,o>—°r3<ro,r>dr
0 or
, v dr? " , Fmat )
IT (cio= w911 (PWW) =k =fr f(ro.0r¥(ro, Mdro=Nmal (). (81)

(76)
Here we took into account that, in the transient stage, for the

The main contribution to the characteristic time of themain part of the distribution the inequality>r () holds.

transient stage gives the time interval wharf/dt—0 and By this reasonr?® practically does not depend og
r>pB, J<Jna HereJna is the maximum amountat the : i

given condition$ of the evolving phase per lattice site. This With Egs.(80) and (81), we may reformulate E((78) as
effect is particularly well expressed for a sufficiently high dr2

degree of metastability in the initial state.g., for the limit = —DeffANmaNs—fﬁ]ax),
ITic{y>k.. in the case of a weak solutipnin this case, the dt

r|t=tN:rOv tysSt<ty

clusters of the evolving phase as well as the degree of meta- (82)
stability are sufficiently large, and surface effects may beW.
neglected. The late stage is reached, when the degree of
metastability tends to zero. Here surface effects become of
Y = (Jmax/Nimd o= N1, (83

importance, again, and determine the asymptotic behavior
[13,14].

Taking into account above comments, we obtain from Eq:
(76) (employing a Taylor expansion and the condition
dr?/dt—0) the following sufficiently accurate expression

Jmax IS given by Eqs(80) and(81).
In Eq. (82), the variables may be separated and we arrive
at a solution in the implicit form

dr2 k.. V2 1 -1 fv ydy 1| 1-% 1 y?+y+1
R - - =—|1In —In5>5——
dt 1 Hi(CiO_ViJ)Vij| 2| Di A(Cio_ ViJ) ygl_y3 3 1- y 2 y0+y0+1
(77) 5 5
At J<Jax EQ.(77) can be written in the form _‘/3( arctan‘73(y+1/2)—arctan‘73
drz— DesA(J—J =t< 78
dt - PerA 7 dnad, WSt 79 X(yo+112)| | = =, (84)
0
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S oy St SO
FIG. 1. Evolution of the clus-
ter size distribution function
f(n,7) for different stages of the
process: (a) Establishment of a
quasi-steady-state nucleation for
the range of cluster sizes<n,
for 7< 7, (left top) in the stage of
nonsteady-state nucleation(b)
evolution in the stage of quasi-
steady-state nucleatigright top);
(c) evolution in the transient stage
to coarsening(left bottom); (d)
evolution in the late stage of
coarseningright bottom).

SNAN2 N3N\

ne n ng*nc n

S@® 1, St<ty = Tycl A1 4p34 f

N, ity t3 14 N n n—n, n
r ro _, Deg In other words, the ratio of the widths of the intervals is
Yosy=r—<1 Yyo=—<1; to =5 ANlya. determined by the ratity,a{( 7)/f ma{ ), Wherer ., is deter-
max max

(85) mined by Eqs(66) and(83), respectively, for the both con-
sidered cases.
After the substitution of the expression for the quantityve
have V. DISCUSSION
- - - /
I=anN~, ty =Dyl A(ws/0m) 5. (86) The present paper is devoted to the description of the

Th tef has th . f th dist entire course of the evolution of a phase transformation pro-
€ parametet has the meaning of the average distanceq,qq encompassing both the quasi-steady-state nucleation
between the particles of the phadeis determined via Eq.

: h i ing | It -
(65) andJ, ., via Eq. (81). stage and the transient stage to coarsening in a multicompo

; . : nent solid solution. An approach to the theoretical treatment
Equation(84) shows that, in the main part of the spectrum PP

foh ticles (for v<1). the t 3 b lected of this problem is proposed and a complete set of equations
of phase partic es (for y ), the termy” may be neglecte is formulated describing this process. The expression for the
in the denominator. This way, we get

effective diffusion coefficient is derived, which determine
t the flux of structural units of the phase through the bound-
y2= y§+ 2 - to=ts. (87) aries of the aggregates of the evolving phase. This coefficient
0 can be written as a combination of the partial diffusion co-
efficients of the different components in the solid solution.
All the basic characteristics of the phase transformation
process are determined analytically including the following:
the distribution function of particles with respect to cluster
size, the cluster flux in size space, the maximal number of
phase particles, and estimates of the duration of the different
stages of the process.
The degree of dispersity of the system is shown to grow

In the close vicinity of unity the relative siaeexponen-
tially goes with time to unity,y— 1. Consequently, in the
time intervalty<t<ty a distribution of phase particles is
formed that represents the initial state for the late stage of th
process, the so-called coarsenifig,14. The distribution
function is given in the transient state, in dependence,on
by Egs.(71) with a value ofr, determined by Eq(87). We

et . . o .
d essentially in the initial, nucleation stage of the process of
lofo phase separation. However, at the transient stage, the width
f= ar O(r ma{ ™) —T0)B(rg—Tg). (88  of the distribution with respect to cluster sizes is reduced, but
increases again at the later stage, approactimgeduced
The parametea is given by Eq.(56). variable$ a constant valu¢l3,14). These results allow one

It follows from Eq. (87) that the range of cluster sizes to vary the dispergity of the evolv.in'g phase by terminating
which gives the basic contribution to the phase in the tranh® phase separation at some definite stage of the process.
sient stage of the transformation, is significantly narrower N addition, the analytic expressions can be utilized to-
than the range of cluster sizes that is formed in the stage d¥ard the determination of the interfacial free enefgnich

steady-state nucleation and that serves as the initial distrib @0 hardly be measured otherwissy comparing the theo-
tion in the transient state. Denoting the width of this initial "€tical results with experimental data. Of course, one has to

be sure that the process is dominated, as assumed here, by
homogenous nucleation.
roArg Fmad ) Numerical solutions of the basic kinetic equations show

> = Arg<<Arg. (89 an excellent agreement with the results of the the@se
V2riatite  Tmad 7o) [12,15,24,32,46-50and Fig. 1.

distribution byr (7)) — 75=Arg, Wwe may write
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The proposed theory can be applied toward the descriphoth states. During the time of transfer of atoms from one
tion of phase transitions in the liquid as well as for the casdocation in the solution to a neighboring one, or to the ag-
of droplet formation with a given stoichiometric composi- gregate of the phase, the environment of these particles does
tion. not change. This way, the kinetic coefficients, which deter-

mine the transition velocity from the reaB{ ,.,) and the

ACKNOWLEDGMENTS virtual (Enynﬂ) media to the phase aggregate, coincide.
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given by the Deutsche ForschungsgemeinsclifG). Bnn+1=Ban+1- (A2)

APPENDIX: DERIVATION OF BASIC KINETIC EQUATION
N . i L The ratio of atoms of the different components, allowed to
Primarily, the theoretical description of the kinetics of ,qve in the virtual medium, is determined by the equilib-

first-order _phase transitions, proceec_iing via the mechanism,m, conditions (equality of chemical potentialswith the
of nucleation and growth, can be given based on a set Qi 556 aggregate of size The frequencies of aggregation to

kinetic equations of the form an aggregate of sizein the real and virtual media have the
form
Jf(n,t)
= HnH=ln=1n],
(A1) V1= Bnnt1tWane1, 7’n,n+1::3n,n+lwn,n+1-
[(n,t)=wp e f(N)—vpynf(N+11) (A3)
=vpneq| (N0 — Mf(n+ 11)]. Here W and W denote the number of favorable configura-
Vnn+1 tions allowing the respective process to proceed.

Since the aggregate is, in the virtual medium, in equilib-

Herel (n,t) denotes the flux of phase particles in cluster sizgium with the ambient phase, we ha, . 1=W;. 1, and

space. Bnnt1=PBn+1n. FoOr the real system, we may write
In order to employ these equations, the rates of aggreg436,51,53

tion and emission have to be determined. The rates of aggre-

gation can be evaluated based on the analysis of the mecha-

nism of growth of the aggregates. Conventionally, the rates

of emission are determined then utilizing the principle of — — —

detailed balancing. We avoid here the application of this ~ “n+in  Bn+1nWn+1n Bn+1nWnr1n  Wins1

principle and use an alternative general method we denoted

as the method of virtual medi@ee, e.g.[36,51,53). This =expAS,). (A4)

method can be employed in systems, where the ambient

phase is in a state of local thermodynamic equilibrium. Here

we will summarize the basic ideas of this method in appli-HereAS; is given byAS,=AS,—AS. It denotes the change

cation to clusters of supercritical sizes. The alternative rangef the total entropy when a structural unit is added to the

of cluster sizes can be treated similadee, e.9[36,51,53).  aggregateAS, is the change of entropy per structural unit
Let us consider two different closed systems, one of thenfor the phase aggregate aid the respective quantity for

being the phase particle in the real medium and the other onge ambient phase\S, may be expressed further as

a phase particle in virtual medium. This virtual medigon

this partly artificial alternative state of the ambiert de-

fined in such a way that the aggregate of the phase is in 1

thermal equilibrium with the ambient phase. For supercritical AS,=— T[A(I)(I”H- 1)—Ad(n)]. (A5)

clusters, this virtual state can be constructed by freezing in

the position of a certain ratio of the different ambient phase

particles in the solutiofi36,51,53. For any aggregate of any

Vnn+1 Ban+1Wnn+1 _ Bnn+1Wnn+1 _ Whn+1

given size(number of structure elementg such virtual state ~ Such replacement can be made if the temperature is not
of the ambient phase or such virtual medium may be ConChanged in the course of transfer of one structural unit from
structed[36,51,52. the ambient phase to the aggregate. Thus, this replacement

The motion of the mobile particles of the different com- can be made in condensed matter only where the thermal

ponents proceeds in the same way as for the real state of tig@nductivity is high.
system since the potential energy landscape is the same for Thus, usingW, ;=1 and Eqs(A2)—(A6) we get
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Vh+1n

=w;,§+1=ex;1(%)[Aq>(n+1)—Aq>(n)].
AB)

Vnn+1

Here A®(n) denotes the difference of the thermodynamic

potential, if a phase aggregate of simeis formed in the
solution.
A substitution of Eq.(A6) into Eq. (A1) yields

PHYSICAL REVIEW E65 031506

Ad(n) Ad(n)
I(n,t)=vn'n+1exr<— = )exr{ T )f(n,t)
Ad(n+1)
—exp(f f(n+1,t)}. (A7)

By a Taylor expansion of the second term in the brackets
in the right-hand side of EqA7), we get in a first approxi-
mation and fom>1, Eq.(1) is used as the basic equation for
the analysis presented above.
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